AMP-activated protein kinase and carbohydrate response element binding protein: a study of two potential regulatory factors in the hepatic lipogenic program of broiler chickens.
نویسندگان
چکیده
This study investigated the effects of fasting and refeeding on AMP-activated protein kinase (AMPK) and carbohydrate response element binding protein (ChREBP) mRNA, protein and activity levels; as well as the expression of lipogenic genes involved in regulating lipid synthesis in broiler chicken (Gallus gallus) liver. Fasting for 24 or 48 h produced significant declines in plasma glucose (at 24 h), insulin and thyroid hormone (T3) levels that were accompanied by changes in mRNA expression levels of hepatic lipogenic genes. The mRNA levels of malic enzyme (ME), ATP-citrate lyase (ACL), acetyl-CoA carboxylase alpha (ACCalpha), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1) and thyroid hormone responsive Spot 14 (Spot 14) declined in response to fasting. Refeeding for 24 h increased mRNA levels for each of these genes, characterized by a significant increase ('overshoot') above fed control values. No change in mRNA expression of the two AMPK alpha subunit genes was observed in response to fasting or refeeding. In contrast, ChREBP and sterol regulatory element binding protein-1 (SREBP-1) mRNA levels decreased during fasting and increased with refeeding. Phosphorylation of AMPK alpha subunits increased modestly after a 48 h fast. However, there was no corresponding change in the phosphorylation of ACC, a major downstream target of AMPK. Protein level and DNA-binding activity of ChREBP increased during fasting and declined upon refeeding as measured in whole liver tissue extracts. In general, evidence was found for coordinate transcriptional regulation of lipogenic program genes in broiler chicken liver, but specific regulatory roles for AMPK and ChREBP in that process remain to be further characterized.
منابع مشابه
AMP-activated protein kinase and hepatic genes involved in glucose metabolism.
Mammalian AMP-activated protein kinase presents strong structural and functional similarities with the yeast sucrose non-fermenting 1 (Snf1) kinase involved in the derepression of glucose-repressed genes. It is now clearly established that AMP-activated protein kinase in the liver decreases glycolytic/lipogenic gene expression as well as genes involved in hepatic glucose production. This is ach...
متن کاملNew perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c.
The regulation of hepatic glucose metabolism has a key role in whole-body energy metabolism, since the liver is able to store (glycogen synthesis, lipogenesis) and to produce (glycogenolysis, gluconeogenesis) glucose. These pathways are regulated at several levels, including a transcriptional level, since many of the metabolism-related genes are expressed according to the quantity and quality o...
متن کاملAcetic Acid Activates the AMP-Activated Protein Kinase Signaling Pathway to Regulate Lipid Metabolism in Bovine Hepatocytes
The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hep...
متن کاملChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.
Excess carbohydrate intake leads to fat accumulation and insulin resistance. Glucose and insulin coordinately regulate de novo lipogenesis from glucose in the liver, and insulin activates several transcription factors including SREBP1c and LXR, while those activated by glucose remain unknown. Recently, a carbohydrate response element binding protein (ChREBP), which binds to the carbohydrate res...
متن کاملTranscriptional control of hepatic lipid metabolism by SREBP and ChREBP.
The liver is a central organ that controls systemic energy homeostasis and nutrient metabolism. Dietary carbohydrates and lipids, and fatty acids derived from adipose tissue are delivered to the liver, and utilized for gluconeogenesis, lipogenesis, and ketogenesis, which are tightly regulated by hormonal and neural signals. Hepatic lipogenesis is activated primarily by insulin that is secreted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
دوره 154 1 شماره
صفحات -
تاریخ انتشار 2009